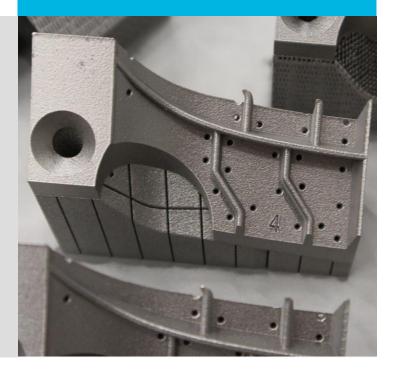


13

M2 Series 5 Maraging Steel M300

Parameters for GE Additive's Concept Laser M2 Series 5

Data in this material datasheet represents material built with 25, 40 and 50 µm layer thicknesses in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. Values listed are typical.



Maraging Steel

Maraging steel M300 has a chemical composition according to 1.2709 and similar to ASTM A646/A646M with exception of Mn, Ni, Co, Ti content. Maraging steels are a class of lowcarbon, high-strength alloys that achieve high strength from intermetallic precipitates while maintaining good ductility. Because of their high strength and hardenability, maraging steels lend themselves to a variety of applications, including manufacturing tool components, structural components and die casting and injection molding tools.

M2 Series 5 M300

The M300 parameters for the Concept Laser M2 Series 5 are developed leveraging the performance of the previous M2 generations. The base parameter deliver good surface quality while maintaining a very good density, mechanical strength and productivity. For highest all-around surface quality, reaching less than 6 µm surface roughness Ra within overhang downskin and upskin regions, the surface parameter has been developed. The hybrid parameter can significantly increase the productivity of parts having a high volume/surface ratio and still meeting highest surface quality requirements.

M2 Series 5 Maraging Steel M300

With corresponding approval* Maraging Steel M300 can be used for manufacturing tool components with conformal cooling for series injection-molding as well as die casting and functional components.

Data in this material datasheet represents material built with 25, 40 and 50 µm layer thicknesses in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. Values listed are typical

POWDER CHEMISTRY

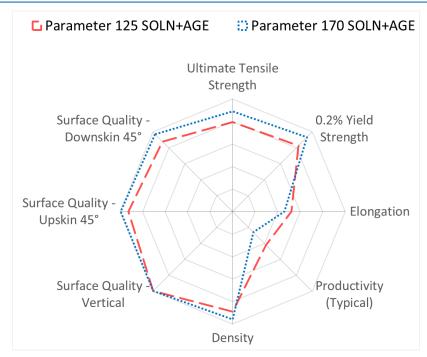
Maraging Steel M300 powder chemical composition et al. according to 1.2709 and similar to ASTM A646/A646M with exception of Mn, Ni, Co, Ti content.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 (single-laser or dual-laser)
- Nitrogen gas
- Rubber recoater blade

AVAILABLE PARAMETERS

- Base Parameter 125[†]
- Surface Parameter 170
- Hybrid Parameter 171


40 μm layer thickness, rubber recoater 25 μm layer thickness, rubber recoater 25/50 μm layer thickness, rubber recoater

⁺For larger components, a modified parameter is recommended. Please contact GE Additive for additional information.

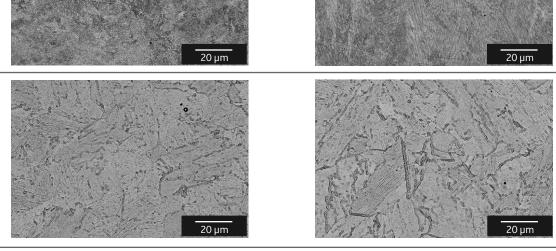
THERMAL STATES

- 1. As-Built
- 2. Solution Anneal + Age (SOLN+AGE) SOLN: 940°C, 2 hours with air cooling + AGE: 490°C, 6 hours

PARAMETER COMPARISON

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Maraging Steel** alloys, the ranges are as follows: UTS: 1650-2250 MPa, 0.2%YS: 1550-2150 MPa, Elongation: 0-10 %, Density: 99-100 %, Productivity: 5-30 cm³/h, Surface Quality (all): 40-5 µm

Base Parameter 125


	(cm³/h)
Typical build rate ¹ w/coating	12.6
Theoretical melting rate ² bulk per Laser	15.0

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surface Roughness Ra** - Ον (μm)				erhang			Surface	e Roughne: (µm)	ss Ra**
		45°	60°	/	75°				(1)	
Upskin		8	6		5		н		18	
Downskin		10	8		5		V		6	
		Relative (%				ardness HV10)		Po	isson's Ra	tio
Thermal State		Н	V		Н		V	Н		V
As-Built	Г	99.9	99.9		357					
SOLN+AGE		99.9	99.9		622					
TENSILE DATA					Tensile te	esting dor	ne in accorda	nce with AS	TM E8 and	ASTM E21
Test Temperature:	0.2% Yield Modulus of Elasticity Strength		Yield	Ultimate Tensile Strength						
RT			Strength			Elongation		Reduction of Area		
		(GPa)	(MI			Pa)		%)		(%)
Thermal State As-Built	H 158	V 157	Н 860	V 1095	H 1090	V 1135	H 12.0	V 12.0	<u>H</u>	V
SOLN+AGE	186		2040	2050	2120	2130	3.5	2.5		
SEM IMAGES										
			Horiz	zontal				Vertic	al	
As-Built					20 µm					20 µm

SOLN+AGE

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

H: HORIZONTAL (XY) orientation

V: VERTICAL (Z) orientation

Surface Parameter 170

	(cm³/h)
Typical build rate ¹ w/coating	7.8
Theoretical melting rate ² bulk per Laser	7.2

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surfac	e Roughness Ra** (μm)	- Overhang		Surface Roughness Ra** (µm)		
	45°	60°	75°				
Upskin	6	5	4	Н	9		
Downskin	6 5		4	V	5		
	Relative Density (%)			lness /10)	Poisson's	s Ratio	
Thermal State	<u> </u>	V	Н	V	Н	V	
As-Built	99.9	99.9	356				
SOLN+AGE	99.9	99.9	636				

TENSILE DATA

Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	Modulus o (Gi	f Elasticity Pa)	0.2% Yield Strength (MPa)		Ultimate Tensile Strength (MPa)		Elongation		Reduction of Area	
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V
As-Built	150	165	950	1135	1140	1195	13.5	13.0		
SOLN+AGE	190	192	2100	2115	2175	2190	3.0	2.0		

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding. ** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

PHYSICAL DATA AT ROOM TEMPERATURE

Hybrid Parameter 171

V

	(cm³/h)
Typical build rate ¹ w/coating	8.6 (8-20) ³
Theoretical melting rate ² bulk per Laser	18.7

99.9

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

³The hybrid parameter build rate is strongly dependent on application design, in particular wall thickness. For this parameter, a larger increase in productivity (faster build rate) can be expected for parts having high volume/surface ratios.

Surface Roughness Ra** - Overhang Surface Roughness Ra** (µm) (µm) 45° 60° 75° Upskin 5 10 6 4 Н Downskin 7 5 5 V 5 **Relative Density** Hardness Poisson's Ratio (%) (HV10) **Thermal State** V Н Н V Н As-Built 99.9 99.9 363 ----99.9

TENSILE DATA

SOLN+AGE

Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	rature: Modulus of Elasticity (GPa)		Stre	0.2% Yield Strength (MPa)		Ultimate Tensile Strength (MPa)		Elongation (%)		Reduction of Area	
Thermal State	H	V	Н	V	Н	V	Н	V	Н	V	
As-Built	149	162	970	1145	1160	1200	14.0	13.0			
SOLN+AGE	188	189	2090	2100	2165	2175	3.5	3.5			

641

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.