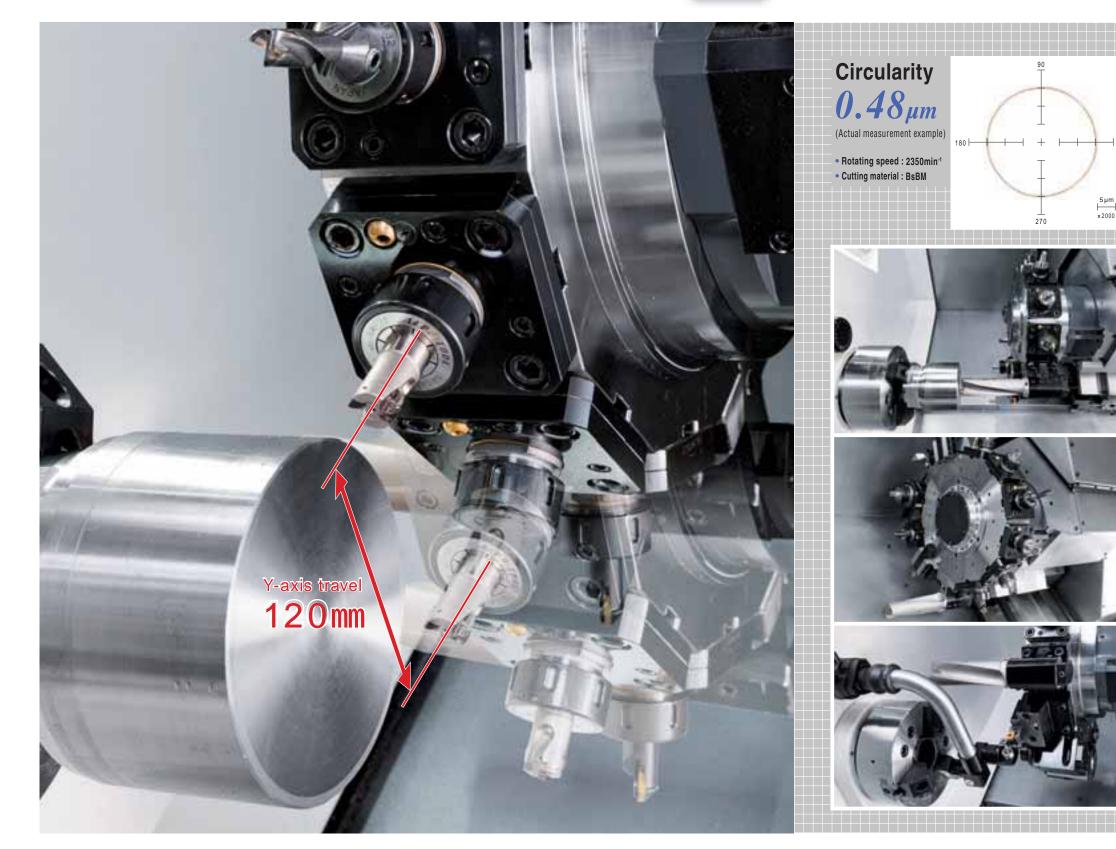
SC-300II

High-performance User-friendly Multitasking machine

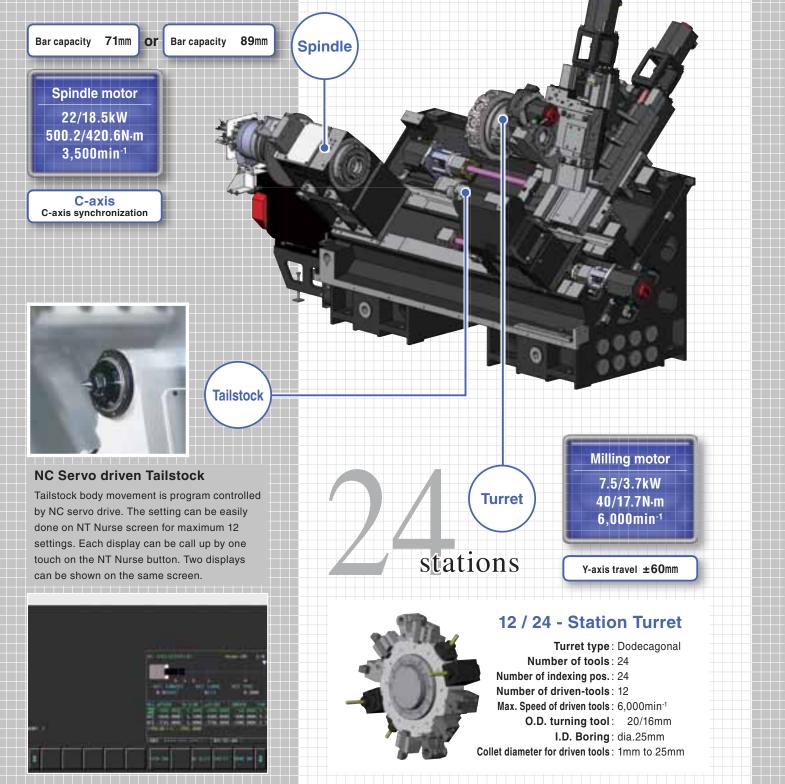
10 00

SC-3007 Powerful cuts and better cost performance


Highest Machining Capabilities in its Class!

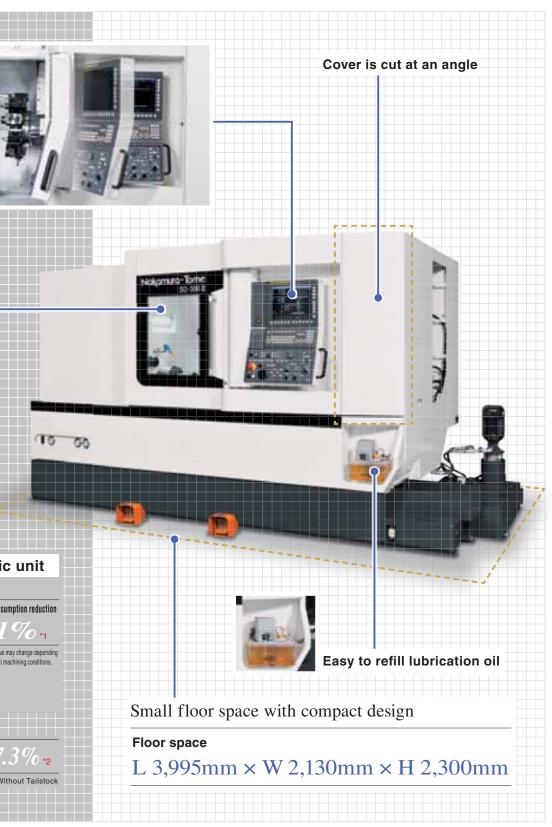
Featuring the latest machining technology

More Capacity with Large Y-axis Travel


Powerful cuts and better cost performance

SC-300II

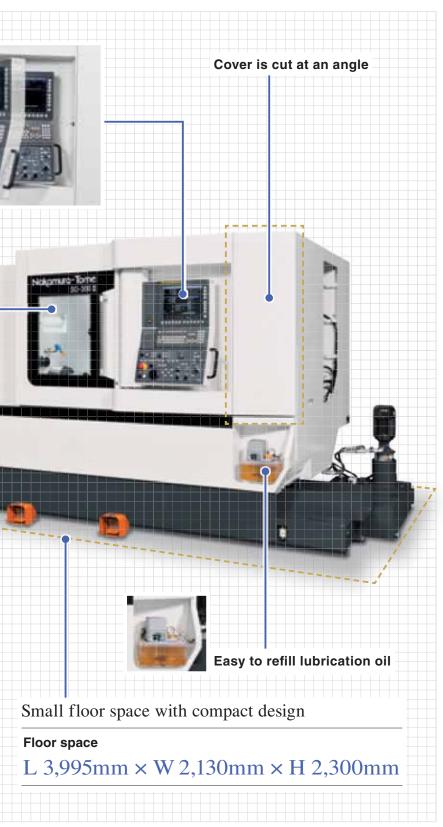
Standard

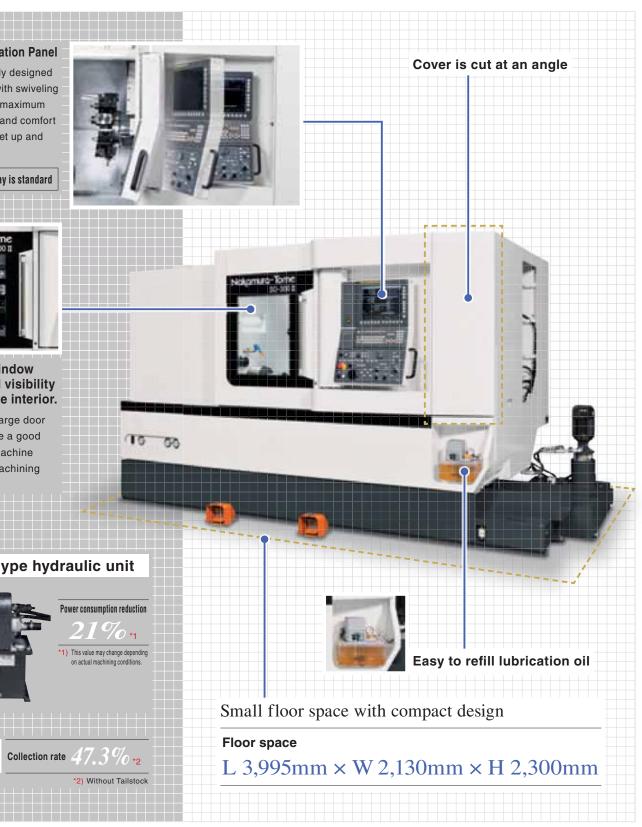

Easy to Use, Fast, and Environment-Friendly Energy-Saving Machine.

Swiveling Operation Panel

The Ergonomically designed operation panel with swiveling function ensures maximum operator support and comfort during machine set up and operation.

15-inch color display is standard





Large door window ensures good visibility of the machine interior.

SC-300II has a large door window to ensure a good visibility of the machine interior during machining and set up.

Inverter type hydraulic unit

Lubrication oil

collection

Powerful cuts and better cost performance

SC-3001

The Ultimate Powerful-Machine: High-Rigidity, High -Precision, User-Friendly Design.

SC-3001

iameter / Max. turning length	360mm / 600mm	
ween center and spindle	713.5mm	
	71mm	89mm (op.)
	10" (12")	
X)	232.5mm	
Z)	635mm	
Y)	±60mm	
d	3,500min ⁻¹	3,500min ⁻¹
pearing	120mm	140mm
n draw tube	72mm	90mm
or	22/18.5kW	
nead / Number of indexing pos.	Dodecagonal drum turret / 24	
uare shank / round shank)	25mm / 50mm	
tool		
pindle speed	6,000min ⁻¹	
	7.5/3.7kW	
Number of driven-tool stations	Individual rotation / 12	
	1 - 25mm	
speed	200min ⁻¹	
rate	1 - 4800°/min	
ement / Least command increment	0.001°/0.001°	
ods	NC type	Hyd. Knock type (op.)

ls	NC type	Hyd. Knock
oning stroke	500mm	400mm
	2.5 - 6.5kN	1.3 - 7kN
	90mm	
size	MT-5 (Rotating center)	
	100mm	

(L × W× H)	3,995mm × 2,130mm × 2,300mm
ght (incl. control)	9,000kg

Full Operator Support: User Friendly and Highly Reliable.

Jig less! Set-up less! Skill less!

This essential function for multitasking machines is standard.

Main Features

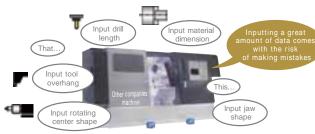
Standard

- NT Work Navigator
- Airbag (Overload detection)
- Advanced NT Nurse

Option

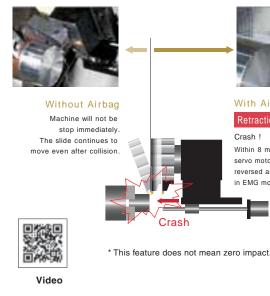
• NT Manual Guide i (LUCK-BEI II)

Net Monitor



Airbag (Overload detection)

Nakamura-Tome machines will not break for the slightest collision, as other machines do. The function minimize damage in case of collision.


Even with barrier function, machine collisions may occur

Soft barrier function is not perfect. If wrong data is input, a collision will occur.

When unavoidable human error results in machine collision, there is no reason to panic.

All Nakamura-Tome machines are equipped with a safety feature called "airbag" (overload detection), which will greatly reduce the impact force and prevent heavy damage to the machine.

n EMG mode

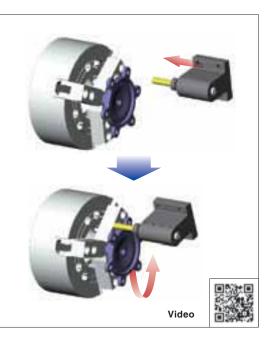
SC-3001

Retraction within 0.008 sec

Within 8 milliseconds after the crash. servo motor-feeding direction is reversed and the machine stops

NT Work Navigator

New Navigator for X-axis and Y-axis



Advanced NT Work Navigator !

Navigation function is expanded to also include the X and Y-axis. Coordinate Recognition can made the part's outer surface in the X or Y-Axis direction.

No fixtures required

Machining parts with non-round shapes, such as forgings or castings requires that the raw part coordinates be recognized by the CNC control. In order to achieve this without requiring extra cost or additional options, the NT Navigator is used. It works just by touching the part with a simple inexpensive probe (mostly round bar mounted on a tool holder) and using the torgue control feature of the servomotor, which is to record required coordinates in the CNC. The NT Navigator is a cost cutting feature in multitasking machines, eliminating the need for positioning fixtures and special clamping devices.

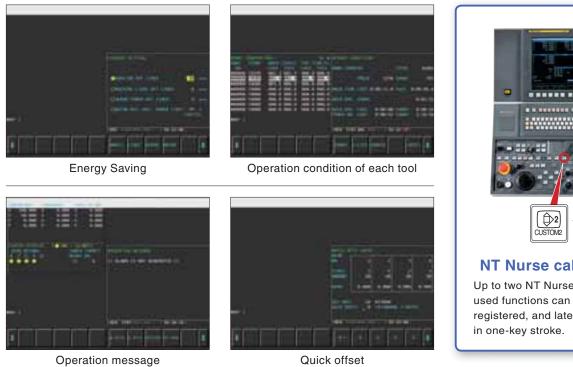
Featuring Functions to Make Fast and Efficient Programs.

Advanced NT Nurse

NT Nurse is software that provides the operator with userfriendly support for operation, programming and production on the machine. Among vital features are phase recognition (a must for multitasking), direct chucking to prevent positioning error during transfer, and perfect synchronization of the left

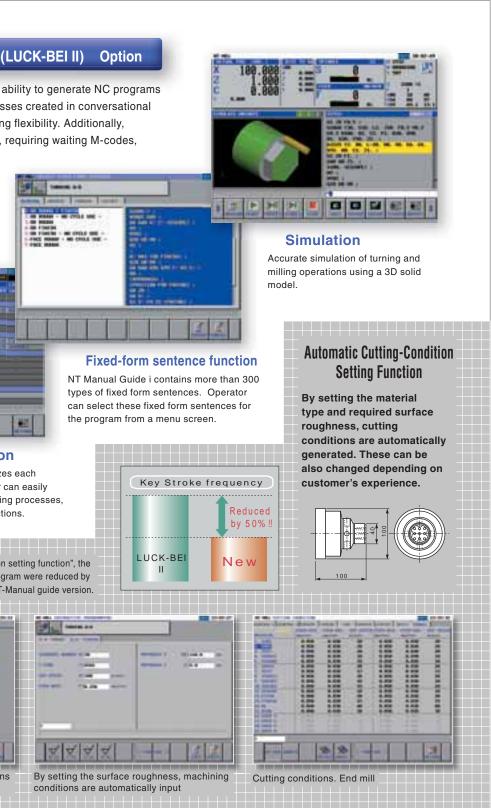
and right hand spindles. Among other features, are the load monitor for detecting tool wear and tool breakage, tool life management, operation condition monitoring, in addition to many other features to simplify programming, set up, operation and production, all offered in one single package.

Useful functions


Menu screen

This only part of 24 functions

Tool Life


----(FS)

NT Nurse call button Up to two NT Nurse frequently used functions can be registered, and later called with

NT Manual Guide i (LUCK-BEI II) Option

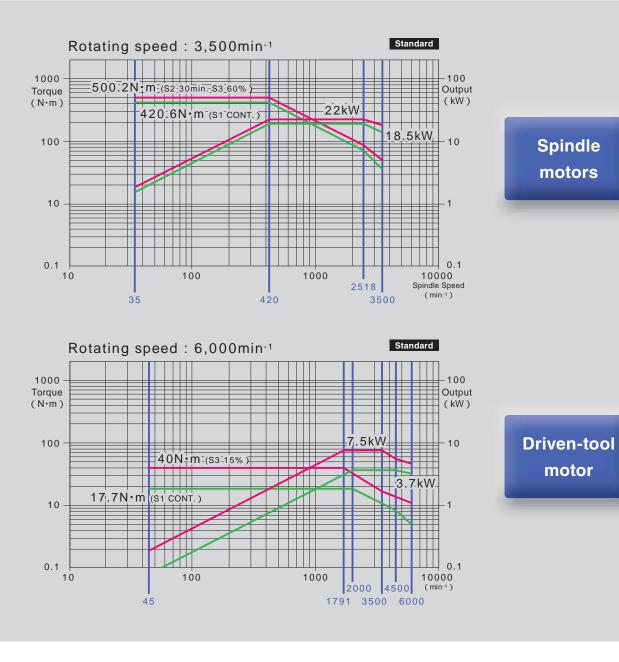
A programming guidance system with the ability to generate NC programs (ISO/EIA G-code programs) easily. Processes created in conversational mode can be cut, copied or moved ensuring flexibility. Additionally, several cycles such as part-transfer cycle, requiring waiting M-codes, are readily made with the "NC program

editing support function". The "NC program simulation function" can be used to check created- programs by tool-path simulation or solid-model animation.

Process Editing Function

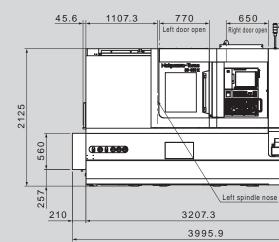
NT Manual Guide i automatically recognizes each process and lists all processes. Operator can easily change and optimize the program by moving processes, copying processes or adding waiting-functions.

 By introducing the "automatic cutti number of key strokes required to reprint the strokes required to required to reprint the strokes required to	•	
50% reduced, compared with the p		
AND BHE TIME.		Par interes
and a second sec		Contraction of the local division of the loc

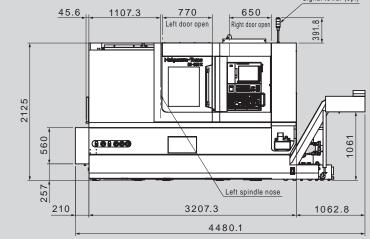


Powerful cuts and better cost performance

SC-300П


High-Performance Turning and Milling Motors

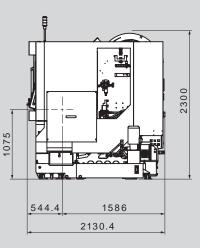
<u>SC-300П</u>

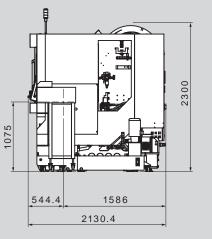


Machine Dimensions

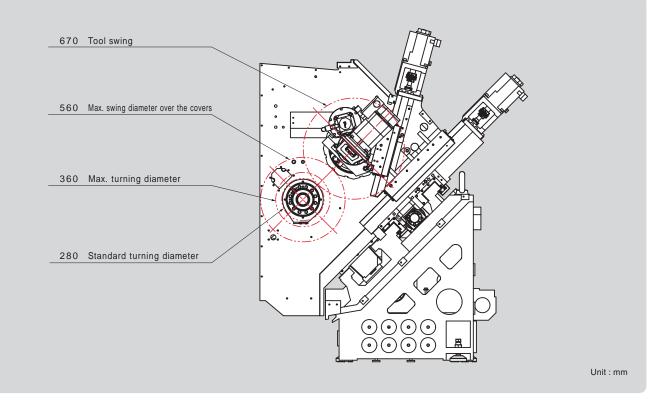
Standard



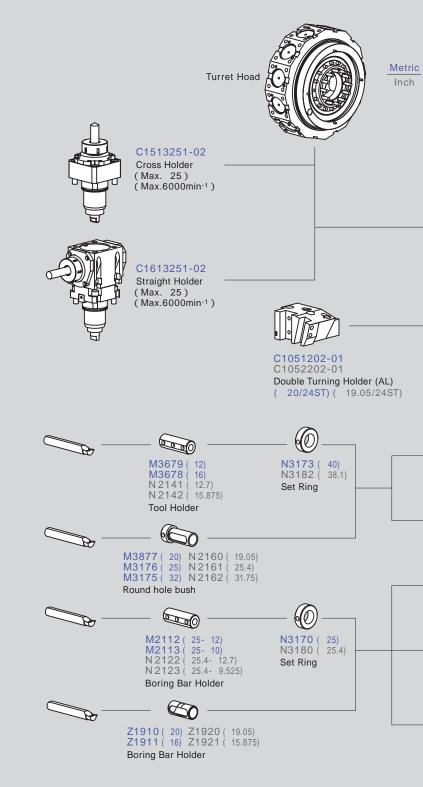

Chip conveyor right side outlet type



SC-300II



Unit : mm


Slide Travel Range / Maximum Tool Diameter

SC-3001

NC Tailstock \bigcirc S.LS 2.5 ZST=-635 2.5 S XST=-232. S.LS 2.5 477. S.LS 2.5 100 282 00 00 STE 1 163 TS.ST = -500 713.5 798 Unit : mm

Tooling System Diagram

SC-3001

0

0

) pool

0000 1

C1021252-01 C1022252-01 Turning Holder (AL) Forward (25) (25.4)

C1221252-01 C1222252-01 Turning Holder (AL) Reverse (25) (25.4)

C1041252-01 C1042252-01 Turning Holder (B) (25) (25.4)

C1111201-01 C1112201-01 Cut-o Holder Forward (20) (19.05)

C1311201-01 C1312201-01 Cut-o Holder Reverse (20) (19.05)

C1411401-01 C1412401-01 Boring Holder (40) (38.1)

C1411401-12 C1412401-12 Boring Holder (Coolant through) (40) (38.1)

C1421251-01 C1422251-01 Double Boring Holder (A) (25) (25.4)

C1091252-01 C1092252-01 Turning Boring Holder (AL) (20, 25/24ST) (19.05, 25.4/24ST)

C1431251-01 C1432251-01 Double Boring Holder (B) (25/24ST) (25.4/24ST)

Machine Specification

SC-300П

Capacity

Max. turning diameter	360mm	
Standard turning diameter	280mm	
Distance between center and spindle	713.5mm	
Max. turning length	600mm	
Bar capacity	71mm	89mm (op.)
Chuck size	10" (12")	

Axis travel

Slide travel (X)	232.5mm	
Slide travel (Z)	635mm	
Slide travel (Y)	±60mm	
Rapid feed X	25m/min	
Rapid feed Z	30m/min	
Rapid feed Y	12.5m/min	
Spindle	71mm	89mm (op.)
Spindle speed	3,500min ⁻¹	3,500min ⁻¹
Spindle speed range	Stepless	Stepless
Spindle nose	A2-8	A2-8
Hole through spindle	85mm	100mm
I.D. of front bearing	120mm	140mm
Hole through draw tube	72mm	90mm

C-axis

Least input increment	0.001°
Least command increment	0.001°
Rapid index speed	200min ⁻¹
Cutting feed rate	1- 4,800°/min
C-axis clamp	Disk clamp
C-axis connecting time	1.5sec.

Turret

Type of turret head	Dodecagonal drum turret
Number of driven-tool stations	24
Number of index positions	24
Tool size (square shank)	25mm
Tool size (round shank)	50mm

Tailstock

Driving Methods	NC type	Hyd. Knock type (op,)
Tailstock postioning stroke	500mm	400mm
Tailstock force	2.5 - 6.5kN	1.3 - 7.0kN
Quill diameter	90mm	
Tailstock taper size	MT-5 (Rotating center)	
Quill travel	100mm	

Rotating tool

Rotary system	Individual rotation	
Driven-tool spindle speed	6,000min ⁻¹	
Spindle speed range	Stepless	
Number of driven-tool stations	12	
Tool shank	Straight holder 1mm - 25mm	
TOOLSHANK	Cross holder 1mm - 25mm	

Drive motor

L-spindle	22/18.5kW	500.2/420.6N·m
Driven tools	7.5/3.7kW	40/17.7N∙m

General

Height	2,300mm
Floor space (L × W)	3,995mm × 2,130mm
Machine weight (incl. control)	9,000kg

Power requirements

power supply	34.2kVA	

Precautions about the use of cutting coolant

Synthetic Coolants are Damaging to Machine Components. Concerning the use of cutting fluids, cautions have to be taken on the type of coolant being used. Among coolants available in the market, some types are damaging to machine components and should be avoided. Typical damages are turcite wear, peeling of paint, cracking and damage to plastics and polymers, expansion of rubber parts, corrosion and rust build up on aluminum and copper. To prevent such damages, coolants that are synthetic, or containing chlorine have to be avoided. Machine warranty terms do not apply to any claims or damage arising from the use of improper coolant.

Safety devices such as various interlocks, fences for robotics, auto loading device, work stocker, automatic fire extinguisher etc. are available as options which can be included in your purchase package. Please contact our local distributor and dealer for your specific requirements.

Control Specification

items		
Control type	Nakamura-Tome FANUC	
Controlled axes		
Controlled axes	4axes (X, Z, C, Y)	
Input command		
Least input increment	0.001mm/0.0001inch (diameter for X-axis), 0.001°	
Least command increment	X : 0.0005mm / Z, Y : 0.001mm / C : 0.001°	
Max.programmable dimension	±999999.999mm/±39370.0787in, ±999999.999°	
Absolute / incremental programming	X, Z, C, Y / U, W, H, V	
Decimal input	Standard	
Inch / Metric conversion	G20 / G21	
Programmable data input	G10	
Feed function		
	feed / min X ,Z : 1 - 8000mm/min, 0.01 - 314inch/min (1 - 4800mm/min, 0.01 - 188inch/min)	
	Y : 1 - 8000mm/min, 0.01 - 314inch/min (1 - 4800mm/min 0.01 - 188inch/min)	
	C:1 - 4800°/min (op.)	
Cutting feed	feed / rev : 0.0001 - 500.0000mm/rev 0.000001 - 9.9999999inch/rev	
	The maximum cutting feed rate is the value in Al contour control mode. It is also on with G316 command. The values in parentheses are normal values.	
Dwel	G04	
Feed per minute / Feed per revolution	G98 / G99	
Thread cutting	G32F designation	
Thread cutting retract	Standard	
Continuous thread cutting	Standard	
Variable lead threading	G34	
Handle feed	Manual pulse generator 0.001/ 0.01/ 0.1mm,°(per pulse)	
Automatic acceleration / decelaration	Standard	
Linear accel./ decel. After cutting feed interpolation	Standard	
Rapidfeed override	F0, 25, 50, 100% (changeable to every 10% by switch)	
Cutting feedrate override	0 - 150% (each 10%)	
AI contouring control I	G5.1	
Spindle override	50% - 120% Set every 10%	

SC-300П

Program memory

Part program storage length	512kbyte (Total 1,280m)
Part program editing	delete, insert, change
Program number search	Standard
Sequence number search	Standard
Address search	Standard
Number of registerable programs	400
Program storage memory	Backed up by battery
Multiple program simultaneous editing	Standard
DNC operation through memory card	Standard (not including memory card)
Extended part program editing	Standard

Operation and display

Operation panel : Display	15inch color LCD unit
Operation panel : keyboard	Separated MDI unit / stsndard key

Programming assist function

circular interpolation R programming	Standard
Direct drawing dimension programming or Chamfering / Corner R	Standard (Direct drawing dimension programming is standard)
Canned cycle	G90, G92, G94
Multiple repetitive canned cycle	G70 - G76
Multiple repetitive canned cycle II	G71, G72
Canned cycle for drilling	G80 - G89
Sub program	Standard
Custom macro	Standard (common variable#100 - #149, #500 - #549)
Addition to custom macro common variables	Standard (After addition, #100 - #199, #500 - #999)
FS10/11 tape format	Standard
Luck-bei II NT Manual Guide i	Option
Abnormal load detection function	Standard
NT Work Navigator	Standard (not including contact bar)
NT Nurse	Standard

Mechanical support

Rigid type	Standard	
Spindle orientation	Standard (Any angle is available within 360°. Control unit: 0.088°)	
Driven-Tool rigid tapping	Standard	
Polygon function	Standard	

Energy-Saving	Function
----------------------	----------

Servo motor off	Standard (selected on energy saving setting screen)
Control of motor output during acceleration and deceleration	Standard (selected on energy saving setting screen)
G code for servo motor energy-saving acceleration and deceleration	G356 / G357 (Acceleration and deceleration time of servo motor is programmable using a G code.)
Fan motor stop	Standard (Fan motor on/off is controlled by detecting temperature of spindle motor)
Auto machine-light off	Standard (selected on the energy saving setting display)
Auto Monitor off	Standard (selected on the energy saving setting display)

Netsuno 15, Hakusan city, Ishikawa, 920-2195 Japan Phone : +81 76 273 8100 Fax : +81 76 273 4312 E-mail : nt-jpn@nakamura-tome.co.jp

- This catalog was published in August, 2017. Specifications, illustrations and data given herein are subject to change without notice.
- The products in this catalog are controlled based on Japan's "Foreign Exchange and Foreign Trade Law". The export of the products are subject to an export license by the Japanese government.